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Abstract— We present in this correspondence a new estimator 
for the sinusoidal frequency-modulated (SFM) signals' phase 
parameters. In order to create a new modulated signal, we first 
created a straightforward function to conduct phase modulation 
on the original SFM signal. Second, we determined the 
modulated signal's amplitude spectrum (AS) and demonstrated 
that it had periodic peaks. Third, by identifying the AS peaks, we 
were able to estimate the parameters of the SFM signals. In 
order to lessen bias, the estimations were finally improved. The 
suggested method has a lower signal-to-noise ratio threshold than 
the current approaches, according to the simulation findings. 

Index Terms—Phase modulation, parameter estimation, 
sinusoidal frequency-modulated signals. 

 

I. INTRODUCTION 

INUSOIDAL frequency-modulated (SFM) signals arise in 

many signal processing applications [1]–[5]. The most no- 

table application is in micro-Doppler (m-D) signals [6], [7]. A 

common model of m-D signals is an SFM one, coming from 

the fact that rotating and/or vibrating parts of targets cause 

m-D signals in the form close to such a model [1]. Therefore, 

the parameter estimation of SFM signals is very useful for 

identifying targets of interest (i.e., helicopters, ships, or aircraft 

with rotating antennas) [6], [8]. In recent years, many algorithms 

for estimating SFM parameters have been published. 

The traditional maximum-likelihood estimation can be used 

to estimate the parameters of SFM signals. However, it yields 

a multidimensional search and is computationally prohibited 

from practical applications [9]. Wang et al. [10] proposed an 

instantaneous phase-based method using a phase unwrapping 

technique followed by a nonlinear coupled least square (PULS) 

method. It was shown that the PULS method is unbiased, and 

its estimation performance can approach the Cramér-Rao lower 

bound (CRLB) at a high signal-to-noise ratio (SNR). However, 

 

the PULS method exhibits a high SNR threshold due to the phase 

unwrapping step [11]. 

The instantaneous frequency (IF) curves of SFM signals are 

still sinusoidal functions. Therefore, it seems intuitively appeal- 

ing to obtain estimations for SFM signals by forming an IF esti- 

mate from the peak of a time-frequency distribution (TFD) [12], 

[13]. Aside from the IF, instantaneous frequency rate (IFR) or 

chirp-rate (CR) [14]–[16] is also be used to obtain the parameter 

estimation of SFM signals. In [9], the method develops a local 

high-order phase function and estimates parameters of SFM 

signals from peak locations in the time-frequency rate domain. 

However, methods for calculating TFD or time-CR representa- 

tion [14] have an intensive computation load. Therefore, these 

estimators based on TFD or time-CR representation also suffer 

a heavy computational burden and are limited to handle short 

observed signals. 

Recently, Igor Djurovic´ et al. proposed the quasi-maximum- 

likelihood (QML) estimator [17]–[19] and then extended it in 

[1] to estimate the SFM parameters using a two-step procedure. 

In the first step, the signal parameters are estimated from the 

IF obtained by the short-time Fourier transform (STFT)-based 

estimator. In the second stage, these estimates are refined by the 

residual phase. The refinement procedure is performed several 

times to produce the mean square error (MSE) on the CRLB 

and remove any residual bias from the estimates. This process 

is repeated with different window sizes for the STFT, and the 

estimate that maximizes the QML parameter is chosen [20]. 

The method has better performance than the existing methods 

in terms of the SNR threshold. However, this method resorts 

to repeatedly performing the STFT for various window widths, 

which results in a very intensive computation burden. 

In this letter, we focus on the estimation of the phase pa- 

rameters of SFM signals at low SNRs. First, we develop a 

simple function to perform phase modulation on the original 

SFM signal to obtain a new modulated signal. Second, we derive 

the amplitude spectrum (AS) of the modulated signal and prove 

that the AS exhibits peaks periodically. Third, we obtain the 

parameter estimation of SFM signals by locating the AS peaks. 

Finally, the estimates are refined by the refinement strategy in 

[1] to achieve the CRLB. Since the AS peaks are robust to the 

influence of noise, the proposed method outperforms the existing 

methods in terms of the SNR threshold, confirmed by Monte 

Carlo simulations. 
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The remainder of the letter is organized as follows: The 

proposed estimator for SFM signals is introduced in Section II. 

The estimating phase modulation coefficient procedure is given 

in Section III. The computational complexity is discussed in 

Section IV. The simulation results and conclusions are presented 

in Sections V and VI, respectively. 

 
II. PROPOSED ESTIMATOR 

A. Signal Model 

The following model can describe SFM signals [1]: 

x(t) = exp [jθ (t)] = exp (ja sin (bt + c)) , 0 ≤ t ≤ T (1) 

where T is the signal duration, θ(t) = a sin(bt + c) is the phase 

function, a > 0is the so-called modulation index, b is the radian 
frequency, and c is the initial phase and limited in the interval 

are solutions of the following [21]: 

∂φ (t, ω)  
= Φ′ (t)    ω = ab cos (bt + c) + Dt   ω = 0 (5) 

∂t 
where Φ′(t) is the first time derivative of Φ(t). In general, (5) 
has multiple roots. However, when D > ab2 , we can obtain 

Φ′′ (t) = −ab2 sin (bt + c) + D > 0 (6) 

where Φ′′(t) is the second time derivative of Φ(t). In this case, 

(5) has only one root because Φ′(t) is a strictly monotonically 
increasing function due to Φ′′(t) > 0. Therefore, (5) has only 
one stationary point tω 

ab cos (btω + c)+ Dtω−ω = 0 (7) 

Note that tω denotes the localization of ω in the time domain, 

and it is a function of ω. Thus, the PSP approximation to the 
spectrum of z(t) is [21] 

[ −π, π ) for avoiding modulo 2π. In this letter, we focus on 
  

2π 
 

j(Φ(t 
 
)−ωt  + π ) 

 
 

the estimation of the phase parameters a = [ a b c ]
T
 of SFM 

signals. 
Z (jω) ≈ Φ′′ (tω) exp ω ω    4 

, ω0 ≤ ω ≤ ω0 + β 

(8) 

B. Phase Modulation 

We first present a phase modulation function (PMF), which 

is defined as follows: 

where ω0 denotes the initial frequency and β denotes the band- 
width of the modulated signal. By (6), we can obtain Φ′′(t) > 0 
when D > ab2

. Therefore, substituting (6) into (8), the AS of 
z(t) is 

g (t) = exp 
Dt2 

j 2 , 0 ≤ t ≤ T (2) 

 
 

|Z (jω)|  ≈ 

 
    2π 

 
Φ′′ (tω) 

We assume that D is a known constant and referred to as the    

phase modulation coefficient (PMC). However, D is unknown 

in practice and is required to be estimated. We will discuss this 

problem further in Section III. It is clear that the PMF is a linear 

frequency modulation (LFM) signal. For SFM signals, we can 

employ the PMF to perform the phase modulation on the original 

= 
  2π  

−ab2 sin (btω + c)+ D 

C. Parameter Estimation 

(9) 

SFM signal according to the following formula 

z (t) = x (t) g (t) 

When D > ab2 , according to (9), we can conclude that, in 
general, there exist many points {tωi |i = 1, 2, . . .} such that 

Dt2 
 

 
 

 

sin (btωi  + c) = 1 (10) 

= exp (ja sin (bt + c)) exp  j 
2 

These points maximize |Z(jω)| at the frequency 
{ωi|i = 1, 2, . . .}, and the maximum of  |Z(jω)| is 

 

= exp 
 

j   a sin (bt + c)+  
Dt2    

 

 

 R = max (|Z (jω)|) ≈ 
  2π  

−ab2 + D 

 
(11) 

= exp (jΦ (t)) (3) 

where Φ(t) = a sin(bt + c)+ Dt2/2. The modulated signal 

z(t) is a hybrid linear frequency modulation-sinusoidal fre- 

quency modulation signal [11]. Note that the added phase term 

Dt2/2 is introduced to estimate the phase parameters of SFM 

signals. 

The Fourier transform of z(t) is as follows: 

Since the sine function is periodic, Z(jω) shows peaks pe- 

riodically in the frequency interval [ ω0, ω0 + β ]. For example, 

we consider an SFM signal. After phase modulation, the AS of 

the modulated signal is shown in Fig. 1. We can see that the 

AS exhibits peaks at the frequencies ω1 , ω2, and ω3 , and the 

frequency difference of any two adjacent peaks is equal. 

Having periodic peaks is a crucial property of the modulated 

signals. Using this property, we can easily obtain the parameter 

Z(jω) =  
 
 

+∞ 

−∞ 

∫ +∞ 
 

 

ejΦ(t) e−jωtdt 

∫ +∞ 

 

 

estimation of SFM signals by locating the AS peaks. This is 

why we take phase modulation to the SFM signals. Now, we 

start proving this property. Without loss of generality, assume 

 
where φ(t, ω) = Φ(t)      ωt. The Fourier transform of z(t) is 
relatively complicated. A very useful and much simpler ap- 

proximation can be derived using the principle of stationary 

phase (PSP) [21]. According to the PSP, the stationary points 

obtain  
ab cos (bt + c)+ Dt = ω 

ab cos 
 

btωi+1   + c
  

+ Dtωi+1   = ωi+1 

 

(12) 

that we have located any two adjacent peaks of the AS at the 

frequencies ωi and ωi+1. Since ωi and ωi+1 satisfy (7), we can −∞ −∞ 

2 

ej[Φ(t)−ωt]dt = ejφ(t,ω)dt (4) 
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, ,    

    
cos   bt

 + c   = 0ωi+1 

, ,    

⎧
⎪⎨ 

b = 2πD/(ωi+1 − ωi) 

 

Substituting (22) into (21) yields 

c = π/2+2π (i − 1) − ωib/D (23) 

In summary, by locating the AS peaks of the modulated 

signals, we can obtain parameter estimation of the original SFM 

signal by the following formula 

 

a ≈ D  b2−2π R2b2 

⎩⎪ 
c = π/2+2π (i − 1) − ωib/D 

(24) 

Remake: Recalling (19), to estimate the parameter b, we need 
to obtain at least two AS peaks. Therefore, the proposed method 

is limited to the case of 
 

 

 
Fig. 1.  AS of the modulated signal. (The parameters are 

 

 
D. Refinement 

b ≥ 2π/T (25) 

a = [10π   0.1π   0],  D = 3.101,  t ∈ [0,   50] s, and Ts = 0.02 s). Using (24), we can estimate the phase parameters of SFM sig- 

nals. However, it is worth noting that (8) is only an approximate 

In addition, since (10) holds at the frequencies ωi 
it is easy to deduce 

and ω i+1, 
equation; therefore, the obtained estimate is biased. However, 

the estimation can be used as a coarse estimation, and we can use 

the technique proposed in [1] for the refinement of the obtained   
cos (btωi + c) = 0  

Substituting (13) into (12) yields 

(13) 
coarse results. 

 
III. ESTIMATION OF THE PMC 

  
Dtωi  = ωi 

 
(14) 

Recall that we assume that PMC is a known constant in Sec- 

tion II. However, the PMC is unknown in practice and is required 
Dtωi+1 = ωi+1 

Then, the frequency difference of any two adjacent peaks can 

be expressed as 

Δωi+1 = ωi+1−ωi (15) 

Substituting (14) into (15) gives 

Δωi+1 = Dtωi+1 −Dtωi   = D 
 
tωi+1 −tωi 

  
(16) 

  

to be estimated. It is not easy to obtain the PMC satisfying 

(6), i.e., D > ab2
. Fortunately, we can take advantage of the 

framework of the QML estimator and use a one-dimensional 

(1-D) grid search to solve this problem. 

Suppose that the signal x(t) is uniformly sampled at the sam- 

pling interval Ts. To avoid the aliasing of PMF, the bandwidth of 

the PMF does not exceed the sampling rate, and thus is limited 

 

tωi+1 — tωi = 2π/b (17) 0 ≤ DT ≤ 2π/Ts (26) 

Substituting (17) into (16) gives 

Δωi+1 = 2πD/b (18) 

(18) proves that the frequency difference of any two adjacent 

peaks is equal. Therefore, the AS peaks of the modulated signal 

are periodic, with a period of 2πD/b. By (18), we can obtain 

b = 2πD/Δωi+1 = 2πD/(ωi+1 − ωi) (19) 

(19) demonstrates that if the PMC D is known, then we 

can estimate the parameter bfrom the AS peak locations of the 

modulated signal. 

Next, by (11), we can obtain 

a ≈ D  b2−2π R2b2 (20) 

(20) states that the parameter a can be estimated from the 

amplitude of peaks. 

Finally, by (10), we can obtain 

btωi + c = arcsin (1) = π/2+2π (i − 1) (21) 

By (14), we have 

tωi  = ωi/D (22) 

Using (26), we can obtain 

0 ≤ D ≤ 2π/(TTs) (27) 

Therefore, suppose that D is in the interval [ 0, 2π/(T Ts) ], 
we can use a 1-D grid search over the interval to select the 

PMC satisfying (6). The complete estimation algorithm for SFM 

signals is shown in Table I. 

Remake: Note that (27) is only a restriction on D  from 

the perspective of avoiding aliasing of PMF. However, D is 

unknown in fact, and we cannot give its interval. As a result, there 

are two cases. In the first case, if D is within the interval defined 

by (27), we can estimate it by a 1-D grid search mentioned above. 

In the second case, if D is not in the interval defined by (27), 

the proposed method will fail to obtain the parameter estimates 

of SFM signals. 

 
IV. COMPUTATIONAL COMPLEXITY 

Now consider the computations required for the proposed 

algorithm. It consists of a phase modulation procedure, a cal- 

culating spectrum, a locating peaks step, and a refinement step. 

to and tωi , we have i+1 Since (10) also holds at the times tω 
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TABLE I 
ESTIMATION ALGORITHM FOR SFM SIGNALS 

 

 
 

   
 

   
 

    
  

 

 
 

  
 

 

 

  
 

 
 

 
 

 
 
 

The phase modulation procedure requires O(N ) operations. The 

fast Fourier transform can obtain the modulated signal spectrum, 

and its complexity is O(N log N ). The locating peaks step only 

requires N real additions, and its complexity is not higher than 

O(N ). The refinement step includes dechirping the signal with 

the coarse estimates, a simple moving average filter, and a basic 

unwrap. The three operations are linear in N , so its complexity 

is O(N ) [20], [22]. Therefore, the overall complexity of the 

proposed method is O(N log N ). However, when we use a 1-D 

search to select the optimal PMC, the above procedures need 
to be repeated for each PMC. As a result, the computational 

complexity of the proposed method increases to O(N 2 log N ) 
from O(N log N ). The estimator in [1], referred to as Igor 

Djurovic´ (ID) method, has complexity O(N 3) [1], [18]. It is 

clear that the proposed method is computationally simpler than 

the ID algorithm. 

 
V. NUMERICAL STUDY 

In this section, simulation results are provided to evaluate 

the proposed estimator. We consider an SFM signal modeled as 

follows 

x(t) = exp (ja sin (bt + c)) , 0 ≤ t ≤ T (28) 

where a = 10π , b = 0.06π, c = 0, and T = 50s. The signal is 

corrupted by a zero-mean white Gaussian noise and uniformly 

sampled with the sampling interval Ts= 0.05 s having N = 1001 

samples. For the sake of convenience, we refer to the proposed 

method as the phase modulation (PM) method. The proposed 

technique is compared with the ID estimator. 

 

 

 
Fig. 2. MSEs of the phase parameters of the SFM obtained using the PM and 
ID. Thick solid line—CRLB; thick solid line with marker Δ—ID; thick solid 
line with marker Ⓧ—PM. 

 
The MSE of the estimated parameters has been used as a 

performance measure. The SNR range is SNR [ 16, 0 ] dB, 

added in increments of 1 dB. For each SNR, 500 Monte Carlo 

simulations are used to estimate the MSE of the estimates. Fig. 2 

depicts the results obtained. As seen, the MSE value of the 

PM is close to the CRLB [23] when SNR -8 dB, and the 

SNR threshold of the PM is better than that of the ID by 4 dB. 

Therefore, the proposed method can be used as an alternative 

approach for the estimation of SFM signals at low SNRs. 

 

VI. CONCLUSION 

We suggested a productive method for SFM signal estimation at low 

SNRs. The primary innovation of the suggested approach is that the 

original SFM signal's phase is modulated using LFM signals. By 

identifying the AS peaks of the modulated signal after phase modulation, 

we can quickly determine the phase parameters of the original SFM 

signal. The suggested technology has a lower SNR threshold than the 

current approaches, according to simulation data.
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